Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Resour Announc ; 12(11): e0067823, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37846988

RESUMO

We report the sequencing of two viruses, Phasi Charoen-like phasivirus (PCLV) and Fako virus (FAKV), which were detected in a pool of Aedes aegypti from Kenya. Analysis showed a high similarity of PCLV to publicly available PCLV genomes from Kenya. FAKV showed a high genetic divergence from publicly available FAKV genomes.

2.
mSphere ; 8(2): e0048822, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36794933

RESUMO

Arboviruses are among emerging pathogens of public and veterinary health significance. However, in most of sub-Saharan Africa, their role in the aetiologies of diseases in farm animals is poorly described due to paucity of active surveillance and appropriate diagnosis. Here, we report the discovery of a previously unknown orbivirus in cattle collected in the Kenyan Rift Valley in 2020 and 2021. We isolated the virus in cell culture from the serum of a clinically sick cow aged 2 to 3 years, presenting signs of lethargy. High-throughput sequencing revealed an orbivirus genome architecture with 10 double-stranded RNA segments and a total size of 18,731 bp. The VP1 (Pol) and VP3 (T2) nucleotide sequences of the detected virus, tentatively named Kaptombes virus (KPTV), shared maximum similarities of 77.5% and 80.7% to the mosquito-borne Sathuvachari virus (SVIV) found in some Asian countries, respectively. Screening of 2,039 sera from cattle, goats, and sheep by specific RT-PCR identified KPTV in three additional samples originating from different herds collected in 2020 and 2021. Neutralizing antibodies against KPTV were found in 6% of sera from ruminants (12/200) collected in the region. In vivo experiments with new-born and adult mice induced body tremors, hind limb paralysis, weakness, lethargy, and mortality. Taken together, the data suggest the detection of a potentially disease-causing orbivirus in cattle in Kenya. Its impact on livestock, as well as its potential economic damage, needs to be addressed in future studies using targeted surveillance and diagnostics. IMPORTANCE The genus Orbivirus contains several viruses that cause large outbreaks in wild and domestic animals. However, there is little knowledge on the contribution of orbiviruses to diseases in livestock in Africa. Here, we report the identification of a novel presumably disease-causing orbivirus in cattle, Kenya. The virus, designated Kaptombes virus (KPTV), was initially isolated from a clinically sick cow aged 2 to 3 years, presenting signs of lethargy. The virus was subsequently detected in three additional cows sampled in neighboring locations in the subsequent year. Neutralizing antibodies against KPTV were found in 10% of cattle sera. Infection of new-born and adult mice with KPTV caused severe symptoms and lead to death. Together, these findings indicate the presence of a previously unknown orbivirus in ruminants in Kenya. These data are of relevance as cattle represents an important livestock species in farming industry and often is the main source of livelihoods in rural areas of Africa.


Assuntos
Orbivirus , Feminino , Animais , Bovinos , Ovinos , Camundongos , Orbivirus/genética , Quênia/epidemiologia , Letargia , Ruminantes , Animais Domésticos , Cabras , Gado , Anticorpos Neutralizantes
3.
Virol J ; 19(1): 178, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36348341

RESUMO

The emergence and rapid spread of SARS-CoV-2 variants of concern (VOC) have been linked to new waves of COVID-19 epidemics occurring in different regions of the world. The VOC have acquired adaptive mutations that have enhanced virus transmissibility, increased virulence, and reduced response to neutralizing antibodies. Kenya has experienced six waves of COVID-19 epidemics. In this study, we analyzed 64 genome sequences of SARS-CoV-2 strains that circulated in Nairobi and neighboring counties, Kenya between March 2021 and July 2021. Viral RNA was extracted from RT-PCR confirmed COVID-19 cases, followed by sequencing using the ARTIC network protocol and Oxford Nanopore Technologies. Analysis of the sequence data was performed using different bioinformatics methods. Our analyses revealed that during the study period, three SARS-CoV-2 variants of concern (VOC) circulated in Nairobi and nearby counties in Kenya. The Alpha (B.1.1.7) lineage predominated (62.7%), followed by Delta (B.1.617.2, 35.8%) and Beta (B.1.351, 1.5%). Notably, the Alpha (B.1.1.7) VOC were most frequent from March 2021 to May 2021, while the Delta (B.1.617.2) dominated beginning June 2021 through July 2021. Sequence comparisons revealed that all the Kenyan viruses were genetically similar to those that circulated in other regions. Although the majority of Kenyan viruses clustered together in their respective phylogenetic lineages/clades, a significant number were interspersed among foreign strains. Between March and July 2021, our study's findings indicate the prevalence of multiple lineages of SAR-CoV-2 VOC in Nairobi and nearby counties in Kenya. The data suggest that the recent increase in SARS-CoV-2 infection, particularly in Nairobi and Kenya as a whole, is attributable to the introduction and community transmission of SARS-CoV-2 VOC among the populace. In conclusion, the findings provide a snapshot of the SARS-CoV-2 variants that circulated in Kenya during the study period.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Filogenia , Quênia/epidemiologia , COVID-19/epidemiologia , Análise de Sequência
4.
Virol J ; 18(1): 204, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34641884

RESUMO

BACKGROUND: Arbovirus surveillance and recurrence of outbreaks in Kenya continues to reveal the re-emergence of viruses of public health importance. This calls for sustained efforts in early detection and characterization of these agents to avert future potential outbreaks. METHODS: A larval survey was carried out in three different sites in Kwale County, Vanga, Jego and Lunga Lunga. All containers in every accessible household and compound were sampled for immature mosquitoes. In addition, adult mosquitoes were also sampled using CO2-baited CDC light traps and BG-Sentinel traps in the three sites and also in Tsuini. The mosquitoes were knocked down using trimethylamine and stored in a liquid nitrogen shipper for transportation to the laboratory where they were identified to species, pooled and homogenized ready for testing. RESULTS: A total of 366 houses and 1730 containers were inspected. The House Index (HI), Container Index (CI) and Breateau Index (BI) for Vanga Island were (3%: 0.66: 3.66) respectively. In Jego, a rural site, the HI, CI and BI were (2.4%: 0.48: 2.4) respectively. In Lunga Lunga, a site in an urban area, the HI, CI and BI were (22.03%: 3.97: 29.7) respectively. The indices suggest that this region is at risk of arbovirus transmission given they were above the WHO threshold (CI > 1, HI > 1% and BI > 5). The most productive containers were the concrete tanks (44.4%), plastic tank (22.2%), claypot (13.3%), plastic drums (8.9%), plastic basins (4%), jerricans (1.2%) and buckets (0.3%). Over 20,200 adult mosquitoes were collected using CDC light traps, and over 9,200 using BG- sentinel traps. These mosquitoes were screened for viruses by inoculating in Vero cells. Eleven Orthobunyavirus isolates were obtained from pools of Ae. pembaensis (4), Ae. tricholabis (1), Cx. quinquefasciatus (3), Culex spp. (1) and Cx. zombaensis (2). Five of the Orthobunyaviruses were sequenced and four of these were determined to be Bunyamwera viruses while one isolate was found to be Nyando virus. One isolate remained unidentified. CONCLUSIONS: These results indicate circulation of Orthobunyaviruses known to cause diverse grades of febrile illness with rash in humans in this region and highlights the need for continued monitoring and surveillance to avert outbreaks.


Assuntos
Aedes , Orthobunyavirus , Animais , Chlorocebus aethiops , Quênia/epidemiologia , Mosquitos Vetores , Células Vero
5.
mSphere ; 6(5): e0055121, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34643419

RESUMO

Vector-borne diseases (VBDs) cause enormous health burden worldwide, as they account for more than 17% of all infectious diseases and over 700,000 deaths each year. A significant number of these VBDs are caused by RNA virus pathogens. Here, we used metagenomics and metabarcoding analysis to characterize RNA viruses and their insect hosts among biting midges from Kenya. We identified a total of 15 phylogenetically distinct insect-specific viruses. These viruses fall into six families, with one virus falling in the recently proposed negevirus taxon. The six virus families include Partitiviridae, Iflaviridae, Tombusviridae, Solemoviridae, Totiviridae, and Chuviridae. In addition, we identified many insect species that were possibly associated with the identified viruses. Ceratopogonidae was the most common family of midges identified. Others included Chironomidae and Cecidomyiidae. Our findings reveal a diverse RNA virome among Kenyan midges that includes previously unknown viruses. Further, metabarcoding analysis based on COI (cytochrome c oxidase subunit 1 mitochondrial gene) barcodes reveal a diverse array of midge species among the insects used in the study. Successful application of metagenomics and metabarcoding methods to characterize RNA viruses and their insect hosts in this study highlights a possible simultaneous application of these two methods as cost-effective approaches to virus surveillance and host characterization. IMPORTANCE The majority of the viruses that currently cause diseases in humans and animals are RNA viruses, and more specifically arthropod-transmitted viruses. They cause diseases such as dengue, West Nile infection, bluetongue disease, Schmallenberg disease, and yellow fever, among others. Several sequencing investigations have shown us that a diverse array of RNA viruses among insect vectors remain unknown. Some of these could be ancient lineages that could aid in comprehensive studies on RNA virus evolution. Such studies may provide us with insights into the evolution of the currently pathogenic viruses. Here, we applied metagenomics to field-collected midges and we managed to characterize several RNA viruses, where we recovered complete and nearly complete genomes of these viruses. We also characterized the insect host species that are associated with these viruses. These results add to the currently known diversity of RNA viruses among biting midges as well as their associated insect hosts.


Assuntos
Ceratopogonidae/virologia , Código de Barras de DNA Taxonômico/métodos , Metagenômica/métodos , Vírus de RNA/genética , Animais , Insetos Vetores , Quênia , Filogenia
6.
PLoS One ; 16(7): e0253955, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34197539

RESUMO

BACKGROUND: Bunyamwera(BUNV) and Ngari (NGIV) viruses are arboviruses of medical importance globally, the viruses are endemic in Africa, Aedes(Ae) aegypti and Anopheles(An) gambiae mosquitoes are currently competent vectors for BUNV and NGIV respectively. Both viruses have been isolated from humans and mosquitoes in various ecologies of Kenya. Understanding the risk patterns and spread of the viruses necessitate studies of vector competence in local vector population of Ae. simpsoni sl which is abundant in the coastal region. This study sought to assess the ability of Ae. Simpsoni sl mosquitoes abundant at the Coast of Kenya to transmit these viruses in experimental laboratory experiments. METHODS: Field collected larvae/pupae of Ae. Simpsoni sl mosquitoes from Rabai, Kilifi County, were reared to adults, the first filial generation (F0) females' mosquitoes were orally exposed to infectious blood meal with isolates of the viruses using the hemotek membrane feeder. The exposed mosquitoes were incubated under insectary conditions and sampled on day 7, 14 and 21days post infection to determine susceptibility to the virus infection using plaque assay. RESULTS: A total of 379 (Bunyamwera virus 255 and Ngari virus 124) Ae. simpsoni sl were orally exposed to infectious blood meal. Overall, the infection rate (IR) for BUNV and NGIV were 2.7 and 0.9% respectively. Dissemination occurred in 5 out 7 mosquitoes with mid-gut infection for Bunyamwera virus and 1 out of 2 mosquitoes with mid-gut infection for Ngari virus. Further, the transmission was observed in 1 out of 5 mosquitoes that had disseminated infection and no transmission was observed for Ngari virus in all days post infection (dpi). CONCLUSION: Our study shows that Ae. simpsoni sl. is a laboratory competent vector for Bunyamwera virus since it was able to transmit the virus through capillary feeding while NGIV infection was restricted to midgut infection and disseminated infection, these finding adds information on the epidemiology of the viruses and vector control plan.


Assuntos
Aedes/virologia , Arbovírus/genética , Vírus Bunyamwera/genética , Viroses/transmissão , Animais , Arbovírus/patogenicidade , Vírus Bunyamwera/patogenicidade , Vírus Chikungunya/patogenicidade , Humanos , Quênia/epidemiologia , Mosquitos Vetores/patogenicidade , Carga Viral/genética , Viroses/epidemiologia , Viroses/genética , Viroses/virologia , Zika virus/patogenicidade
7.
Parasit Vectors ; 14(1): 138, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33673872

RESUMO

BACKGROUND: Chikungunya virus is an alphavirus, primarily transmitted by Aedes aegypti and Ae. albopictus. In late 2017-2018, an outbreak of chikungunya occurred in Mombasa county, Kenya, and investigations were conducted to establish associated entomological risk factors. METHODS: Homes were stratified and water-filled containers inspected for immature Ae. aegypti, and larval indices were calculated. Adult mosquitoes were collected in the same homesteads using BG-Sentinel and CDC light traps and screened for chikungunya virus. Experiments were also conducted to determine the ability of Culex quinquefasciatus to transmit chikungunya virus. RESULTS: One hundred thirty-one houses and 1637 containers were inspected; 48 and 128 of them, respectively, were positive for immature Ae. aegypti, with the house index (36.60), container index (7.82) and Breteau index (97.71) recorded. Jerry cans (n = 1232; 72.26%) and clay pots (n = 2; 0.12%) were the most and least inspected containers, respectively, while drums, the second most commonly sampled (n = 249; 15.21%), were highly positive (65.63%) and productive (60%). Tires and jerry cans demonstrated the highest and lowest breeding preference ratios, 11.36 and 0.2, respectively. Over 6900 adult mosquitoes were collected and identified into 15 species comprising Cx. quinquefasciatus (n = 4492; 65.04%), Aedes vittatus (n = 1137; 16.46%) and Ae. aegypti (n = 911; 13.19%) and 2 species groups. Simpson's dominance and Shannon-Wiener diversity indices of 0.4388 and 1.1942 were recorded, respectively. Chikungunya virus was isolated from pools of Ae. aegypti (1) and Cx. quinquefasciatus (4), two of which were males. Minimum infection rates of 3.0 and 0.8 were observed for female Ae. aegypti and Cx. quinquefasciatus, respectively. Between 25 and 31.3% of exposed mosquitoes became infected with CHIKV 7, 14 and 21 days post-exposure. For the experimentally infected Cx. quinquefasciatus mosquitoes, between 13 and 40% had the virus disseminated, with 100% transmission being observed among those with disseminated infection. CONCLUSIONS: These results demonstrated high risk of chikungunya transmission for residents in the sampled areas of Mombasa. Transmission data confirmed the probable role played by Cx. quinquefasciatus in the outbreak while the role of Ae. vittatus in the transmission of chikungunya virus remains unknown.


Assuntos
Febre de Chikungunya/transmissão , Culex/virologia , Surtos de Doenças , Mosquitos Vetores/virologia , Aedes/virologia , Animais , Febre de Chikungunya/epidemiologia , Febre de Chikungunya/virologia , Vírus Chikungunya/patogenicidade , Culex/classificação , Características da Família , Feminino , Habitação , Humanos , Quênia/epidemiologia , Masculino , Mosquitos Vetores/classificação , Fatores de Risco , Carga Viral
8.
PLoS One ; 15(11): e0241754, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33156857

RESUMO

Between late 2017 and mid-2018, a chikungunya fever outbreak occurred in Mombasa, Kenya that followed an earlier outbreak in mid-2016 in Mandera County on the border with Somalia. Using targeted Next Generation Sequencing, we obtained genomes from clinical samples collected during the 2017/2018 Mombasa outbreak. We compared data from the 2016 Mandera outbreak with the 2017/2018 Mombasa outbreak, and found that both had the Aedes aegypti adapting mutations, E1:K211E and E2:V264A. Further to the above two mutations, 11 of 15 CHIKV genomes from the Mombasa outbreak showed a novel triple mutation signature of E1:V80A, E1:T82I and E1:V84D. These novel mutations are estimated to have arisen in Mombasa by mid-2017 (2017.58, 95% HPD: 2017.23, 2017.84). The MRCA for the Mombasa outbreak genomes is estimated to have been present in early 2017 (2017.22, 95% HPD: 2016.68, 2017.63). Interestingly some of the earliest genomes from the Mombasa outbreak lacked the E1:V80A, E1:T82I and E1:V84D substitutions. Previous laboratory experiments have indicated that a substitution at position E1:80 in the CHIKV genome may lead to increased CHIKV transmissibility by Ae. albopictus. Genbank investigation of all available CHIKV genomes revealed that E1:V80A was not present; therefore, our data constitutes the first report of the E1:V80A mutation occurring in nature. To date, chikungunya outbreaks in the Northern and Western Hemispheres have occurred in Ae. aegypti inhabited tropical regions. Notwithstanding, it has been suggested that an Ae. albopictus adaptable ECSA or IOL strain could easily be introduced in these regions leading to a new wave of outbreaks. Our data on the recent Mombasa CHIKV outbreak has shown that a potential Ae. albopictus adapting mutation may be evolving within the East African region. It is even more worrisome that there exists potential for emergence of a CHIKV strain more adapted to efficient transmission by both Ae. albopictus and Ae.aegypti simultaneously. In view of the present data and history of chikungunya outbreaks, pandemic potential for such a strain is now a likely possibility in the future. Thus, continued surveillance of chikungunya backed by molecular epidemiologic capacity should be sustained to understand the evolving public health threat and inform prevention and control measures including the ongoing vaccine development efforts.


Assuntos
Febre de Chikungunya/diagnóstico , Vírus Chikungunya/classificação , Sequenciamento de Nucleotídeos em Larga Escala/normas , Mutação de Sentido Incorreto , Proteínas Virais/genética , Sequenciamento Completo do Genoma/métodos , Aedes/virologia , Substituição de Aminoácidos , Animais , Febre de Chikungunya/virologia , Vírus Chikungunya/genética , Surtos de Doenças , Humanos , Quênia , Mosquitos Vetores/virologia , Filogenia , Análise de Sequência de RNA , Clima Tropical
9.
Virus Evol ; 6(1): veaa026, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32523778

RESUMO

Dengue fever (DF) is an arboviral disease caused by dengue virus serotypes 1-4 (DENV 1-4). Globally, DF incidence and disease burden have increased in the recent past. Initially implicated in a 1982 outbreak, DENV-2 recently reemerged in Kenya causing outbreaks between 2011 and 2014 and more recently 2017-8. The origin and the evolutionary patterns that may explain the epidemiological expansion and increasing impact of DENV-2 in Kenya remain poorly understood. Using whole-genome sequencing, samples collected during the 2011-4 and 2017-8 dengue outbreaks were analyzed. Additional DENV-2 genomes were downloaded and pooled together with the fourteen genomes generated in this study. Bioinformatic methods were used to analyze phylogenetic relationships and evolutionary patterns of DENV-2 causing outbreaks in Kenya. The findings from this study have shown the first evidence of circulation of two different Cosmopolitan genotype lineages of DENV-2; Cosmopolitan-I (C-I) and Cosmopolitan-II (C-II), in Kenya. Our results put the origin location of C-I lineage in India in 2011, and C-II lineage in Burkina Faso between 1979 and 2013. C-I lineage was the most isolated during recent outbreaks, thus showing the contribution of this newly emerged strain to the increased DENV epidemics in the region. Our findings, backed by evidence of recent local epidemics that have been associated with C-I in Kenya and C-II in Burkina Faso, add to the growing evidence of expanding circulation and the impact of multiple strains of DENV in the region as well as globally. Thus, continued surveillance efforts on DENV activity and its evolutionary trends in the region, would contribute toward effective control and the current vaccine development efforts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...